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Abstract

The diffusion and conversion of ACh from one form into another responsible for the transmission ol

nerve impulses in the cholinergic synapses is described by means of five simultancous ordinary diflerential cquations.
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MODELE DYNAMIQUE DE LA TRANSMISSION DE LA
SYNAPSE CHOLINERGIQUE

Résumé

La diffusion et la conversion de ACh de l'une de ses formes dans une autre responsable pour la

transmission des impulsions nerveuses dans les synapses cholinergiques est décrite au moyen de cing équations

diflerentielles simultances et ordinaires.

Mois-clefs: Modele mathématique dynamique, transmission synaptique cholinergique, simulation a Fordinateur

INTRODUCTION

The following basic hypotheses with respect to the
transmission of nerve impulses in the cholinergic
synapses are assumed in the present model:

(i) There exist two forms of acetylcholine (ACh) in
the presynaptic area: *free’ ACh and ACh bound to the
synaptical vesicles (Israel er al., 1970; Marchbanks,
1975 Isracl et al., 1979).

(i) The nerve impulses rcach the presynaptic
membrane and change its permeability, resulting in
release of *frec” ACh into the synaptic cleft (Dunant et
al., 1974; MaclIntosh and Collier, 1976). By intensive
activity of the synapse the decrease of *free’ ACh in the
presynaptic zone leads to the decline of vesical ACh
which participates in the transmission process.

(1ii) The *frec® ACh released in the cleft binds the
specific ACh receptors on the postsynaptic membrane
(Nachmansohn, 1962). ACh produces a confor-
mational change of the receptor protein and the
resulting shift of charge triggers a sequence of reactions
responsible for the permeability of the postsynaptic
membranc (Heidmann and Changeux, 1978).

(iv) The next step is an almost instantancous
hydrolysis  of the ACh by the enzymc acetyl-
cholinesterase (AChE). The products of the hydrolysis
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diffuse back to the presynaptic zone and are used for a
new synthesis of ACh (Silver, 1974).

Our lirst purpose is to describe mathematically the
diffusion and conversion of ACh in the synaptic arca.

MATHEMATICAL MODEL

Figure 1 shows a schema of the synaptic arca:
imagine a circular cylinder H perpendicular to the
plane of the synaptic membranes, bound by the plane
section M of the postsynaptic membranc and the planc
section N which outlines the beginning ol the
presynaptic zone. The rectangule on Fig. | presents a
plane section of H. The volume of H can be considered
assum of three volumes V, + V| + V,: I, is the volume
of all the vesicles in I, V, TV, is the volume of the
presynaptic zone, and V5 is the volume of the synaptic
cleft. Since the volumes Vi, V,, Vy are small we may
consider average concentrations in cvery volume
instead of concentrations in every point of I1. This
saves the necessity of introducing partial differential
equations in the model.

Consider first the rate of change of the quantity of
the vesical acetylcholine (A,) with time. Assuming that
A, converts only into *free’ acetylcholine (4 ,). i.e. the
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ACh=—eCh

PtSm

Av—acetylchohne vesicles; PSM- presynaptic membrane;
AChR - acetylcholine receptors; PtSM - postsynaptic mem-

brane; H - the space of consideration in the model.

Fig. I. Synapse. The space of consideration is denoted by H.

vesicles do not pour out directly into the cleft, we may
write

() dWVolA /e = K([A,] = [4.]).

where K, is a parameter characterizing the per-
meability of the vesical membranes.

Noticing that 4, increases by the quantity of A4,,
which is poured out from the vesicles, we have

d(Vi[A,1)dt = =R ([A;] = [A]) + ...

In the right-hand side we must also subtract a term
accounting for the decrease of A4, caused by the
diffusion of A, through the presynaptic membrane
into the cleft. This term is proportional to the
difference of the concentrations of 4, and of ACh
released in the cleft 4, with some coeflicient K,
characterizing the permeability of the presynaptic
membrane and hence of the form K, ([A,]— [A4,])
Finally we add a term P, accounting for the new
synthesis of ACh in the presynaptic area. Thus the
equation for 4, obtains the form

(2) d(Vy [A,)/dt = — Ko ([A,] = [4,])

= K,([4;] = [4]) + P.
The quantity V,[A,] of ACh released in the synaptic
cleft increases by the quantity of ACh diffusing

through the presynaptic membrane, which is equal to
K,([A;] ~ [A,]). and diminishes by the quantity Q of
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ACh bounding the receptor R on the postsynaptic
membrane:

() A [A4,])dt = Ky([4,] = [4]) - Q.

Equations (1)-(3) describe the diffusion of ACh
through the membranes. Next we describe the
interaction of the ACh in the cleft with the receptor R
on the postsynaptic membrane, producing the
complex RA and the subsequent dissociation of RA.
The complex RA dissociates into the receptor R and
some products S from which ACh is produced in the
presynaptic zone later on:

A+R2RASR+5.
Ko K

Here K., and K_, denote the rate constants for
bounding and dissociation of the complex RA4, K , , s
the rate constant for the reaction RA > R + S: K_, is
assumed to be zero according to the fact that the
reaction R+ S — RA is of very low rate and can be
neglected.

Thus we have

d[RAJ/dt = K [A, J([R] — [RA])
— (K- + K42 [RA]

where [R] = const. is the concentration of all
receptors and hence [R] — [RA ] is the concentration
of the free receptors.

In the following we assume that the volumecs
Vi, Vy, V3 are constant in time. Multiplying the last
equation by V; yields

4) Vad[RA/dt = d(V2[RAT)/dt
= 11K, [4,]([R] = [RA])
~ VoK -y + K1) [RA]

Eqguation (4) shows that the quantity of ACh
bounded to R increases by V,K, ([4, [([R] — [RA]).
This should be equal to the quantity Q in equation (3)
since ACh in the cleft diminishes by the quantity Q

Q = V2K [A]([R] — [RA]).

Consider now the rate of variation of the quantity S
of the products obtained from the dissociation of the
complex AR. The concentration of these products in
the synaptic cleft at time t will be denoted by [S](1).
Then S = V5[S]. According to the mass-conservation
law the quantity S is equal to the quantity of the newly-
synthesized ACh. The increase of S is as great as the
decrease of the ACh bounded to the receptors on the
postsynaptic membrane. The decrease of S is as great
as the quantity of the newly-synthesized ACh in the



Dynamical model of cholinergic synapse transmission

presynaptic zone. These arguments lead to the
equation:

(5) d(Vs[SDH/dt = Va(K -y + K 5)[RA] — P,
where P is the term appearing in (2).

Clearly P is proportional to the difference
[S] — [A4,]witha coeflicient K, > 0denoting the rate
of diffusion of the products S of the dissociation of AR
on the postsynaptic membrane to the presynaptic
membranc. Thus (5') may be written

(5) d(Vs[SD/dr = VaK4[RA] — KW ([ST — [4,]),
wherein K, = K | + K, 5.
Equation (2') obtains the form
dVi[Ay)/dt = = K ([A,] — [4,.])
2) = K,([A;] = [4)
+ K ([ST— [A,D).
With some approximation we further assume that

Vo = V1. Denoting further K , | by K and V,/V, = rwe
arrive at the system

d[ A,
[,’] — Ku([4,] — [4,0)
dt
d .
[j’] = KATAy] T K ([A,]
S A+ KI8T~ (4,0
d[ A K
61 B - KR
~[RAD).
‘”iﬂ — KA (R] — [RAT) — Ky[RAT,
d[S K,
511 ~ KyIRAT— (18]~ 14,

where K, = K,/Vo, K, = K,/Vo. K,, = K,,/V, and all
the concentrations are taken at the moment .

Next we give some explanations with respect to the
parameters K, and K,

The parameter K, characterizes the permeability of
the vesicle memoranes. We may assume that K, can
take two different values depending on the magnitude
of the difference [A4,] — [4,] between the con-
centrations of the bounded and free ACh in the
presynaptic zone. If this difference is too great the

vttty AFtlhe cvmamem 1merancne a1 E talboac a coroatorr-
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value b in comparison with its normal value «. Thus we
put

ey Jedt A0 = 140 < 5
Ko = R *{b. iA1= [0 > e

where ¢ is a threshold value.

The parametre K, characterizes the permeability of
the presynaptic membrane with respect to ACh. We
assume that K, depends linearly on the frequency V of
the arriving nerve impulses, K, (1) = K.(t) + K, ,.

The function v is an input function for the system (6).
The output function is the concentration [RA]
responsible for the potential generated on the
postsynaptic membrane as a result of the binding of
ACh to [R].

Let us look now at the mathematical problem. We
have the system (6) of five ordinary differential
equations with unknown positive parameters a, b, ¢, K,
K,o. K, K4. K, and [R]. The problem is to find
values for these parameters so that the output function
[RA](t) reacts to the input function v(r) in a
reasonable way. Thus we have a parameter
identification problem for the system (6). There are no
convenient methods for solving this problem because
the coeflicients K, and K, are nonlinear functions. We
have treated our problem by means of computer
simulation.

COMPUTER SIMULATION

We shall first find the equilibrium state of the system
(6) corresponding to a minimal activity of the synapse.
At equilibrium the impulses transmitted through the
nerve have some minimal frequency to which
corresponds a minimal value K, , of K, (1), such that
K,(t) = K, for all t >1,. At equilibrium it holds
K, = a as well. The stable state [4,]o. [4,]o. [4,]o.
[RA]y, [S]o of system (6) annihilates the derivatives
and thus satisfies the algebraic equations

al [A/]o - [AJ()) =0,
‘”([A/’]U —[4.10) - Kp.of [/4/}0 -
+ K ([8]o = [A;]0) =0,

[Ar}()’

K,
:_*0( (A;]o — [A]o) —

— [RA],) =0,

K, [A,Jo([R]

K.\[Ar}()([R] - [RA]O) - KJ[RA]() =0,

K\\‘ ~
; ([S]o— [A;]0) = 0.

Ku[RA]o —
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This system reduces to four equations, so in order to
determine the stable state we need one more equation.
Such can be the normalizing condition

(8") Vol A Jo + Vi[As ]y

+ W([A o + [RA]y + [S]y) = const.

expressing the fact that the whole quantity of ACh is

constant in the volume H of consideration. In view of

Vy/Vi = Vy/Vy = 1 (8') becomes

(8) (Ao + [4,]0

+ "([7"4&1) + [RA Jn + [S]u) = const. = 1.

From (8) we have

(oK [RAL
(A0 = K. . [R] — [1{11}0‘
(Ao = [Ap]0 = (4]0
) .
X %l + '.l\’l\l,_\(,‘ [R]— [RA]U)}.

[RAT,.

v Krl
[S]y = [1’41‘]“ + "I\

W

Substituting (9)in (8) we get the following quadratic
cquation for [RA],:

(10) 2[RATG — BIRA], + [R] =0,
wherein
j Kd . K(l
SR (P B B e e (A U PR
ITK, Ko
Ky
b= [R]+ 200 + 1 + 1.
f=2[R]+ 2 )K\

It is casily seen that the root
o = (f = B+ 42[R])/(2%) of (10) is always in the
mterval (0, TR 7). whereas the root
uy = (f + \/'//1’2 + 4% [R1)/(2x) is always greater than
[R]. Therefore we have
(1) [RAL, = (f — /B> + 42[R])/(22).

The values for [4, ], [4,]o. [4,]o. [RA]yand [S],
thus obtained determine the stable state of the system.
In order to get a numerical solution of (6) we use the
improved  Euler’'s method. Denoting for brevity
[/1,~J(1,') Njs [/‘1/‘]“/’:,\"# ['4;'1([_/): Zj [S]“_,‘)
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K,(t;) = K, ;. we obtain the following system of
difference equations:

Njoyr = x5+ (W2)[K 05— X)) + K6
— o),
Vier = W2 K (x;— v) = Ky 5))
+ Kylw; = 15) + K680 =4
il L2 )
p
+ K6 =
o =2+ 2)[K v — )r
— K¢ —uj)z; + I\'I,.j(‘,'_‘,l’ — ;'f,-"’) r
. Kx((l _ (4)’1([“]'
wiey =u; + (W2)[Ke —uj)z; — Kau;
+ K=" = Kl
Wi =w; o+ (W2) Ky — Koy — wi)r
+ ’\'d?',‘j“ - Kw()'_‘,‘_’ - ]'(jS))J-
where
P =y hK, 0 ).
}'fil’ =)+ hiK,. ;=) = K= 2))
+ K,.(w; — )],
',"ﬂ’ =z + ll[ oz = Kle — )z
S =+ h K¢ — up)z; — K,
2 =y Ky — Koy = wj)iel.

and the initial values x,. vo. Zo. W, and u,, have already
been computed by means of (9) and (11). isa properly

chosen step. We recall that K,;= Kv;+ K, 0.
Jj=12.. depend on the input sequence v; = v(1;)
and K, ; are defined by

) acif|x; — vl < e
l\,..j-A,:“ i R ]
(hoif [x; — v > e

Our algorithm is as follows:

(1) Give arbitrary input values to the unknown
parameters a, b, &, K. K, . K. K;. K, and [R].

(2) Determine the root uy, = [RA ], of (10) by means
of (I'1).

(3) Using u, determine x = [A4, ]y, vy = [4,]0.
wo = [S]y and z, = [A4, ], by means of (9).

(4) Using an input function v; = v(1;) solve the
system (12) with a properly chosen step /.

(5) Observe whether the function u(t) = [RA](r)
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function v(t). If this is not the case then go to (1) with
other values of the parameters.

After a great number of such experiments the
computer simulation approach gave finally very good
results. Some of them are presented below.

The following input values are common for many
experiments: ¢ =0.1, bh=0.5. ¢=001, K=20,
Koo=05 r=V/V, =02 r =WV, =10, K;=
0.5, K, =25 [R]=1.h=005.

In our examples the input function v(¢) is defined by

0, te[tg, 1],
(1/2)K,.0c0¢™ " (co + K0 — Kpo

te [[l~12]w
v(ta) te [t 15],

(1/2)K , 0c0€" /(¢ + K 0 — K 0™ 7"),

eﬂﬂl*lﬂ)

<

te [ty ty].

The conductivity of the presynaptic membrane is
K,(1) = Kv(t) + K, o = 2v(t) + 0.5. The form of this
function is clear from Figs. 2a and 3a.

Example 1. Here the parameters are r =0.2,
[R]=2, K,=25 K;=05 K,=05 a=0.1,
b=05K,o=05 8 =6 =g ¢ =2

The graphs of the functions K, and [RA] are
presented on Figs. 2a and 2b respectively. It is clearly
seen that both functions have similar behaviour. The
maximum value of [RA] is reached a little later than
the maximum value of K. This reflects the fact that
due to the chemical mechanism of the impulse

P

20) "

15 y=Kp(t)

1.0

0.5 t
T T T —
1 5 10 15

Fig. 2a. Input function K () used in example 1.
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Fig. 3a. The input function used in example 2.
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Fig. 3b. The output function obtained in example 2.

transmission, the train of impulses appears at the “exit’
with some retardation.

Example 2. In this example we have chosen the
following values for the parametres: r = 0.5, [R] =1,
K,=25 K;=05 K, =05 a=01 b=05,
Kpo=052¢ =16 =3 ¢ =10.

The input function v(f) in this example increases
slowly and falls down quickly (indeed we have ¢; = |
in (t;,1;) and &, = 5 1in (t3,t,).

Figures 3a and 3b show the curves K,(f) and
[RA](t), respectively. The observation of the forms of
these curves leads us to the same conclusions as in
example 1.

The computer experiments show that the assum-
ptions outlined in the introduction give the basis of a
plausible mechanism for the transmission of impulses
through the synapse. The results of the simulation
qualitatively match with the results in real experi-
ments.

We hope that it is possible to model different
physiological, extreme and pathological states of the
nerves and other systems on the basis of the proposed
mechanism. The results of such a modeling can be
compared with available data of real experiments. The
model can also be used for simulation of the structural
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